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INTRODUCTION

Prostate cancer is the most common non-skin cancer and the second leading cause of cancer
death among American men [1]. Modern radiotherapy of prostate cancer relies heavily on imaging
technologies for accurate patient setup and target localization [2]. In adaptive RT[3], one of the
most advanced RT techniques, the treatment plan is adaptively adjusted according to the tumor’s
change in position, size, and shape [4-6]. Therefore, high-quality 3D images with good soft-
tissue contrast are necessary for achieving successful adaptive RT. Kilovoltage CBCT has shown
its capability of yielding such images to guide the prostate cancer treatment [7-8]. However,
frequent use of high quality CBCT images is often associated with a substantial amount of imaging
radiation dose [9-12], which raises concerns about patient safety. On the other hand, one unique
feature of clinical CBCT is the availability of a high-quality diagnostic CT image, which can be
incorporated in the CBCT image reconstruction as prior knowledge. The objective of this project
is to investigate and develop advanced CBCT imaging techniques that utilize prior images for
optimized image quality and reduced imaging dose.

Throughout the three years of this project, my effort has been supported by a Predoctoral
Trainee Award, and I have conducted research tasks as planned. As discussed below, I have
investigated and implemented novel scanning trajectories with aid of additional hardware compo-
nents and software control. Simulation data have been generated for initial test of object coverage
for these scanning trajectories. I have also acquired real data of physical phantoms by using a
clinical CBCT system under a variety of sampling configurations, including full-view, sparse-view,
truncated data, and offset-detector configurations. I carried out a rigorous investigation on de-
veloping optimization-based image reconstruction algorithms by specifying a discrete imaging
model, formulating optimization programs, and designing and implementing iterative algorithms.
I have designed a host of parameters for the imaging model, optimization programs, and itera-
tive algorithms, and strategies for adaptively selecting these parameters have been laid out. I
have used developed optimization-based algorithms to reconstruct images from data acquired
under various sampling configurations. Prior images have been investigated for incorporation
in image reconstruction tasks for all the data acquisition configurations. Physical phantoms, in-
cluding standardized QA phantom and anthropomorphic phantoms, were scanned with CT and
CBCT for evaluation of the algorithms developed. Patient data were collected and used for full-
and few-view reconstruction. I have validated, characterized, and assessed the reconstruction
quality by using simulation data, physical phantom data, and patient data. Quantitative metrics
have been calculated for quantitatively characterizing and evaluating the reconstruction quality,
choice of parameters, and strategies for incorporating prior images. I have demonstrated that
prior-image-incorporated iterative reconstruction algorithms can potentially enhance high-quality
CBCT images for IGRT, and that images such reconstructed from substantially reduced data may
still bear high clinical IGRT utility.

I have achieved the goals planned for this project. The techniques developed in the project
have high technical significance in that image quality of current CBCT can potentially be improved
by the algorithms developed, and that novel, high-quality, low-dose CBCT imaging can be enabled
by the algorithms developed.
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BODY

1 Research Accomplishments

1.1 Investigate and develop novel CBCT scanning techniques

1.1.1 Implement narrow beam collimation for CBCT ROI imaging

I have designed and implemented a collimation device and integrated it to the clinical CBCT sys-
tem. With the add-on device, the current system can perform ROI imaging by acquiring projection
data only corresponding to the ROI. I chose to design this device to have similar shape and form
factor to the current collimator used to hold the bow-tie filter for X-ray intensity profile shaping,
such that additional mechanical complexity is minimized. Another advantage of this design is
that mounting is straight forward, which eliminates concerns about mis-alignment with the cur-
rent system geometry. I then purchased the material, cut it to fit in the enclosure, and fixed it. I
then mounted the device to replace the bow-tie filter holder for achieving narrow X-ray collimation.
When I finish data acquisition, the bow-tie filter can be put back for normal clinical use.

I acquired numerous narrow beam collimation cone-beam data sets under different configura-
tions using the developed device. First, the two blocking materials were adjusted to have different
separation distances for achieving varying degrees of beam collimation, which lead to different
sizes of illuminated ROI. Second, I changed different materials for X-ray blocking to reduce the
X-ray leakage from the blocked region. Third, I developed an improved version of the device with
dynamic collimation capability, which can be used to dynamically adjust the degree of collimation
during gantry rotation/data acquisition.

1.1.2 Reproduce the same imaging geometric configurations on CBCT ROI scan as those
on prior diagnostic CT scan

Design of numerical and physical phantoms: I first carried out phantom design by using
computer-simulation data, which we can select the shape, size, and materials of the structures
embedded in a tissue-equivalent environment. I then generated raw projection data using the ge-
ometric configuration of the actual CBCT system, including the source-to-isocenter and detector-
to-isocenter distances, as well as the angular information for each projection view recorded by
the scanner. Furthermore, I considered major physical factors involved in CBCT imaging that de-
viate data from ideal line-integral projections, which include scatter, beam-hardening, and noise.
On top of the raw projection data I simulated scattered X-rays using different scatter-to-primary
ratio (SPR) parameters, including the simplified case of a constant profile and more complicated
but also more accurate case of convolving the primary photons with a Gaussian kernel. I also
obtained the actual X-ray spectrum data measured from the CBCT system under study, which I
incorporated in the computer-simulation program for realistic simulation of beam-hardening effect
due to the polychromatic nature of the X-ray from the linear accelerator. Furthermore, I added
noise to data using a number of different noise models, including Gaussian-, Poisson-, and com-
pound Poisson-distributed noise. I also varied the noise level to mimic different mAs used in
clinical and research modes of the CBCT system.

Based upon experiences with the numerical phantom, I designed and made a physical phan-
tom for data acquisition which have insert structures that mimic the density of human organs. I
first decided to make the phantom to have similar size to a human head to avoid truncation issues
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as a starting point, and plan to design and make another larger phantom to have similar size to
pelvis. I then looked up the X-ray attenuation coefficients of different plastic materials that have
similar attenuation coefficients to the postate, surrounding soft-tissues, as well as bones. I then
obtained the materials from a vendor and assembled the phantom in a plastic enclosure to be
filled with water as the background.

Prior diagnostic CT scan and geometry reproduction on CBCT ROI scan: I acquired prior
images of the standard calibration phantom and the physical phantom I made using a Philips
64-slice diagnostic CT scanner that I have access to in the Radiation Oncology department. I
selected different scanning protocols to acquire data sets of different quality, i.e., noise levels, etc.
Though I tried different methods to reproduce the geometric configurations of the prior diagnostic
scan on CBCT system, this task proved challenging, mainly for two reasons: (1) the source-
to-isocenter and detector-to-isocenter distances are different for the diagnostic scanner and the
CBCT scanner and those are difficult, if not impossible, to adjust. (2) the angular position of each
projection view are not exactly the same, and interpolation across different views can introduce
noticeable loss of spatial resolution.

1.1.3 Generate data from the prior image based upon the CBCT ROI scan configurations
and obtain synthesized projection data

I decided to choose the approach of generating data from the prior image to supplement the
missing portion in the CBCT ROI scan. I first reconstructed a prior image from diagnostic scan
data using the standard FDK algorithm. I then estimated the size of the CBCT scan ROI in
the reconstructed image space, and using this information to remove the corresponding region
in the prior image. I then generated data from the prior image with only the peripheral region
using a discrete forward projector. The forward projection was carried out according to the exact
same geometric configurations used in the CBCT scan, i.e., the same source-to-isocenter and
detector-to-isocenter distances as well as identical angular positions. I then combined the forward
projected data with the CBCT ROI data to obtain a new, synthesized data set without transverse
truncation which is mathematically ready for reconstruction.

1.1.4 Scatter compensation for synthesized physical phantom data

Compared to diagnostic CT where X-ray beam spanning a relatively small cone-angle is used to
illuminate the object, CBCT employs X-ray beam with a much larger cone-angle which illuminates
a significantly greater portion of the object/patient [7]. As such, CBCT data contain a much higher
component coming from scattered photons rather than primary photons (i.e., photons imping-
ing on the detector after penetrating through the patient along a linear trajectory). This scatter
component of the data introduces deviation from and thus inconsistency with the standard X-ray
transform model, and therefore must be compensated for or corrected before reconstruction is
carried out. The necessity in the particular case of patient prostate localization is critical, as the
subtle contrast between the prostate and surrounding soft-tissues can be easily reduced or even
diminished by the scatter component having a low spatial frequency. On the other hand, accurate
scatter correction is known as a difficult problem because precise knowledge about the physical
process of scattering depends on the subject being scanned, and is in general unavailable prior to
a CBCT scan. Nonetheless, I developed empirical compensation techniques that can produce an
estimate of the scatter profile based upon the physical characteristics of scattered radiation. By
appropriately adjusting parameters in the compensation technique, I could minimize the inconsis-
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tency between measured data and the assumed imaging model. To verify and demonstrate the
effectiveness of this technique, I compared the reconstructed images before and after performing
compensation, which showed that the scatter-induced artifact can be considerably reduced.

1.1.5 Implement filtered-backprojection reconstruction from the synthesized projection
data

I implemented the FDK algorithm, a standard filtered-backprojection type reconstruction algo-
rithm, for carrying out image-reconstruction studies from data acquired and processed in previ-
ous steps. I implemented the algorithm in two different programming languages, one in IDL (ITT
Visual Information Solutions, Boulder, CO) and another in C. I first wrote the code in IDL for fast
debugging and test/validation purpose, and after extensive testing using standard numerical phan-
toms, such as Shepp-Logan phantom and FORBILD phantom [23], I implemented the C version
for higher execution efficiency. Furthermore, I also implemented in each language an improved
version capable of parallel-computation to utilize the multi-core CPU that I have installed on my
workstation. The parallel computation of the reconstruction code written in C was implemented
by use of OpenMP, and I managed to achieve an approximately 5-fold acceleration on an 8-core
CPU compared to the single-thread version. I also modified the IDL code to utilize the built-in
multi-threading capability provided by the newest version of the software. On one hand, because
three-dimensional image reconstruction is still computationally intensive, I improved the efficiency
of parallel computation by using more threads. Also I explored further improved efficiency of par-
allel computation enabled by a newly purchased Tesla Graphic Processing Unit (GPU, nVidia,
Santa Clara, CA).

I have applied the robust and efficient FDK reconstruction implementation to reconstruct im-
ages from data synthesized with prior-image forward projection data and CBCT ROI data. The
result shows promising improvement with much reduced truncation artifact.

1.1.6 Investigate and implement different imaging trajectories for CBCT

The current scanning mode of CBCT employs a circular X-ray source trajectory, i.e. the gantry
rotates around the subject while the subject itself stays still. Data sampling for this source trajec-
tory inherently limits the reconstructible region, whereas non-conventional source trajectories can
potentially expand the reconstructible region. I implemented a reverse-helix trajectory for such
purpose. At the time of this phase of investigation, patient couch with programmable translational
motion was not available to me. Instead, I made a supporting device capable of translational mo-
tion and put it on top of the couch. During data acquisition, I programmed the translation device to
feed the object along Z-axis toward the isocenter, while the gantry finishes a full 2π rotation. I then
continued to feed the object along the same direction, while rotate the gantry backward for another
full turn. This scanning mode accomplishes a reverse-helix source trajectory from the view-point
of the object. I implemented a filtered-backprojection (FBP) plus backprojection-filtration (BPF)
algorithm [14,16] to reconstruct an image from this reverse-helix data set. Results show that
the region that is not reconstructible from circular trajectory data can now be reconstructed. I
have designed and implemented other source trajectories including a two-circle trajectory and a
line-plus-circle trajectory, which may have comparable or further enlarged reconstructible region.

1.1.7 Investigate and implement novel scanning trajectories
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Figure 1: Images of the XCAT phantom within
the middle sagittal (a, c, and e) and middle
transverse (b, d, and f) slices reconstructed by
use of the expectation maximization (EM, c and
d) and FDK (e and f) algorithms from the two-
circle scanning data. The phantom truth within
corresponding slices is displayed in (a) and (b).

I have investigated and implemented non-
conventional scanning trajectories for the clin-
ical CBCT system. The current CBCT systems
employ flat-panel detectors, which have limited
size, and lack a slip-ring device as available on
most diagnostic CT systems. Therefore, the
standard circular trajectory as the only choice
available on most clinical CBCT systems re-
sult in a limited axial field of view (FOV), which
poses challenges in clinical applications when
the CBCT images are registered to the plan-
ning CT images with a significantly larger ax-
ial coverage. Specifically, I investigated two
possible solutions to extending axial coverage,
a reverse-helix trajectory and a two-circle tra-
jectory. I first investigated the theoretical axial
coverage by using the Tuy’s condition [13] and
chord-based reconstruction theory [14]. Then,
I performed test reconstructions using simula-
tion data generated from a disk phantom and
a numerical anthropomorphic phantom [15]. I
also considered the implementation feasibility
of these trajectories on existing systems avail-
able in radiation oncology clinic. Finally both
two trajectories were implemented with aid of
necessary parts and auxiliary component de-
vices.

Reverse-helix trajectory I first investigated
the reverse-helix trajectory, which has been
proved to offer larger axial FOV when recon-
structed by use of an innovative technique [16].
For practical feasibility, this trajectory can be realized on the clinical CBCT system with minimal
additional translational feeder device and associated software control. Then, by continuously
feeding in the imaged subject, while rotating the gantry two turns consecutively, first a clock-wise
(CW) spin and then a counter clock-wise (CCW) spin, an effective reverse-helix trajectory was
obtained. I have obtained the auxiliary devices and software and have them implemented on the
clinical CBCT system.

Two-circle trajectory Compared to the reverse-helix trajectory that involves additional hard-
ware device and software synchronization, a two-circle trajectory is more straight-forward to im-
plement. It works by performing a full circular scan, translating the couch for a certain distance,
and then performing another full circular scan. To test the extension of axial coverage, I car-
ried out a simulated data study using numerical disk and anthropomorphic XCAT phantoms [15].
As an example, I show in Fig. 1 the reconstruction result of a two-circle scan performed with a
longitudinal translation of 10 cm. The reconstruction image within the middle sagittal slice demon-
strates that enlarged FOV can be achieved by use of the two-circle trajectory in combination with
appropriately designed iterative algorithms.
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1.2 Develop optimization-based algorithms for CBCT image reconstruc-
tion

1.2.1 Incorporation of prior images into few-view reconstruction by using partially-shifted
truth image

Prior images have been incorporated into reconstruction from few-view data by using partially-
shifted truth image. Specifically, I shifted the internal structures of a number of numerical phan-
toms, including the Shepp-Logan and FORBILD phantoms, by varying distances along different
directions. While the shift was applied, the shapes and sizes of the structures were kept un-
changed. In addition, I obtained realistic phantom images by retrieving CBCT images of phys-
ical phantoms and patients, and artificially introduced shifting by varying the orientation of the
discretized phantom images and by translating the rotated images along three directions in the
Cartesian coordinates. These shifted images have been prepared for few-view reconstruction
experiments.

1.2.2 Incorporation of prior image into few-view reconstruction by using partially-deformed
truth image

Prior images have been incorporated into reconstruction from few-view data by using partially-
deformed truth image. I selected a set of high-contrast and a set of low-contrast structures in the
Shepp-Logan and FORBILD numerical phantoms, and varied their shapes and sizes by changing
their the lengths of the long- and short-axes, while keeping the rest of the phantom unchanged. In
addition, from realistic phantoms obtained from CBCT images of physical phantoms and patients,
I segmented out high- and low-contrast structures such as bones, markers, and soft tissues,
applied deformation operations on the segmented structures, and then put them back on top of
the phantom background. These modifications mimic the unavoidable internal motion of patients
undergoing radiation therapy, and such modified phantom images were prepared for few-view
reconstruction experiments.

1.2.3 Incorporation of prior image in few-view reconstruction

I have investigated a variety of methods for incorporating into few-view reconstruction the infor-
mation of prior images, which were obtained through partially-shifted and partially-deformed truth
phantom images.

Initial-guess method I have incorporated the prior images as initial-guess images in recon-
struction from few-view data. Because few-view reconstruction is ill-conditioned, iterative algo-
rithms were employed for solving the reconstruction programs. Different iterative algorithms have
been developed for image reconstruction, which specify the computation procedures, while the
initial starting point can theoretically be arbitrarily selected. Therefore, despite the known differ-
ences between the prior images and the images to be reconstructed from current projection data,
the prior images serving as initial estimates have proved to be more effective than initial image
without any prior information, such as a blank image. The results show that the higher similarity
between the prior image and the current image, the less iterations it takes for iterative algorithms
to converge, which is an important benefit especially for on-line CBCT imaging under strict time
constraints. I have also identified the disadvantage of this method of incorporating prior image
when the internal shift/deformation is significant, in which case the initial-guess did not show ap-
parent improvement than using an arbitrary image such as a blank image with uniform values,
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such as the average value of the prior image.
Local-region-update method The prior images where also incorporated into few-view re-

construction by means of the local-region-update technique. Specifically, I determined from the
differences between the prior images and the current images regions that remained unchanged
between scans, and explicitly incorporated this prior information as a constraint in the iterative
algorithm for few-view reconstruction. The results show that, when the updating region can
be accurately localized, this method is highly effective in reducing the amount of data required
for reconstruction and in lowering the number of iterations needed for algorithm convergence.
This is because the vast null-space associated with few-view reconstruction, which is a highly
ill-conditioned problem, has been significantly reduced. On the other hand, I have found out,
through numerical studies, that this technique can yield reconstruction of sub-optimal quality when
the shift and deformation cover an extended region over the image support, because additional
data-inconsistency can be introduced to the already ill-conditioned problem due to the unreason-
ably assumed localized update. Such a scenario is, however, not uncommon in practical CBCT
imaging for IGRT, as the shift and deformation soft-tissue organs of patient are not satisfactorily
described by a localized approximation. Therefore, the utility of this method can be limited in
these scenarios due to additional image artifacts.

Image-support method I have also conducted a study on incorporating prior images by con-
straining the spatial support in the iterative reconstruction from few-view data. The support was
estimated from the prior images for each transverse slice, which was then injected to the recon-
struction as an constraint in the image domain by setting at each iteration the voxels outside of
the image support to zero. Because the change of the overall image support between prior and
current scans is expected to be small, a slightly dilated support than prior image can be used
as a reasonable estimate. This method also demonstrated effective in reducing the null space of
the ill-conditioned problem, and is less susceptible to the discrepancy between prior and current
images. In particular, the support can be crucial in few-view reconstruction from truncated data,
because the unmeasured portion of the subject poses challenges to estimating its extent from
the current scan, leading to significantly enlarged null space. In these scenarios, the support
information has shown especially important in reducing truncation-induced artifact. However, the
usefulness of this technique can be limited in reducing the number of views for high-quality re-
construction, for which additional information from the prior image may need to be exploited and
incorporated.

Sparsity-constraint method Based upon the observation that CBCT images of clinical IGRT
interest usually have sparse representation in appropriately chosen domains, I have explored the
method of incorporating sparsity information contained in the prior images. For images that have
sparse representation in their native, spatial domain, the sparsity can directly be used as an addi-
tional constraint. I have developed an iterative-hard-thresholding technique for incorporating such
constraints in iterative reconstruction of sparse images such as in vasculature imaging [28], where
the ell0 norm of the image was employed as a non-convex constraint in iterative reconstruction.
For general images that have extended support in the spatial domain, such as CBCT images of
patients in the pelvis region, the ell0 norm is no longer a good constraint. Instead, the sparsity
in the image-gradient domain was exploited for relaxing the requirement on the amount of data
for reconstruction. I have adapted a TV-minimization-based reconstruction program for few-view
reconstruction of CBCT images. The results show that substantial reduction of view-angles can
be possible.
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1.2.4 Investigate and develop the optimization-based algorithms

I have identified three key components for developing optimization-based algorithms for CBCT
image reconstruction: specification and analysis of imaging model, formulation of optimization
programs, and developing iterative algorithms. Each of the components involve a number of pa-
rameters, and effort has been made to developing strategies for choosing parameters appropriate
to specific imaging configuration and reconstruction task.

Investigate the discrete CBCT imaging model and data divergence I have carried out
detailed analysis on the imaging model of CBCT. The current image-reconstruction algorithms
on clinical CBCT systems are based upon a continuous imaging model, whereas the proposed
optimization-based reconstructions are derived from a discrete imaging model [20]

g0 = H f, (1)

which is distinctively different than the continuous model and has significant implications on the
potential improvement on data-acquisition flexibility and image reconstruction quality. I investi-
gated the impact of key parameters involved in the imaging model, including the basis vectors
for expanding the data and image, as well as the number of pixels and voxels representing the
data and image [21]. Based upon the discrete imaging model in Eq. (1), I investigated the choice
of data divergence, such as the Euclidean distance or Kullback-Leibler (K-L) divergence, which
are defined for quantifying the divergence between the measured data and the model data. I
have determined to focus the project on Euclidean distance, because of the availability of numer-
ous algorithms capable of efficiently reducing it. On the other hand, algorithms minimizing K-L
divergence have been implemented as reference.

Optimization-program formulation Based upon the imaging model and data divergence,
I have designed and investigated a variety of optimization programs for image reconstruction.
Specifically, I considered various forms of image regularizations, including `0, `1, and total-variation-
norms, for incorporation to the optimization programs. Among numerous optimization programs,
I have identified and chosen two programs for image-reconstruction in subsequent CBCT experi-
ments [19]:

f∗= argmin||f||TV s.t. D(f)≤ ε and f j ≥ 0, (2)

and
f∗=argmin||f||TV s.t. D(f)≤ε, f j≥0, and ||f||0≤s. (3)

The rationale for this choice is that the regularization terms effectively sparsifies the image and
reduces the solution set, while iterative algorithms can readily be developed for efficiently reach-
ing the feasible set. Either programs involve a number of parameters, such as the calculation
method for image TV and choice of ε and s. I have investigated the impact of different choices
for these parameters and formed strategies for making reasonable choices according to different
reconstruction programs and tasks.

Iterative algorithms Optimization programs in Eqs. 2 and 3, when fully specified with a
set of parameters, has each implicitly designed a solution set. Iterative algorithms then need
to be employed for numerically arriving at the solution sets. To the best of my knowledge by
surveying existing literature of published works, there are no standard iterative algorithms avail-
able for converging to the solution sets designed by Eqs. 2 and 3. Therefore, I have designed
and implemented a number of iterative algorithms by using the adaptive-steepest-descent-POCS
(ASD-POCS) [21,23] framework. The algorithms operate by alternating among several calcula-
tion steps. A POCS step is employed for reducing Euclidean distance, a steepest descent (SD)
step is used for reducing image TV, and a hard-thresholding step is used for enforcing image
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positivity and `0 constraint. In this process, I have accomplished a non-trivial task of selecting
algorithm parameters, such that a inter-balance is struck among all the operations, and the whole
algorithm approach the designed solution efficiently. Because these parameters depend upon the
specific imaging configuration, imaged subject, and reconstruction task, a set of adaptive step-
size adjustment scheme has been developed and implemented rather than manually interfering
the parameter selection along the iterative computation.

1.2.5 Validate the optimization-based algorithms

To validate the developed optimization programs and iterative algorithms, I ran the iterative algo-
rithms for solving their respective optimization programs from data consistent with the imaging
model [22], which constitutes an ideal scenario. This is an important and necessary step for rigor-
ous algorithm development, because an optimization program and an iterative algorithm are not
expected perform well in real data situations if they fail to yield the desired solution in an ideal
scenario.

Inverse-crime scenario I have carried out a numerical simulation study for validating the
optimization programs and the iterative algorithms. I arranged the simulation under an “ideal”
condition, where the simulated noiseless data are generated from a discrete image array us-
ing a discrete projector, and the same discrete projector is used also for backprojection during
reconstruction. I refer to this well-controlled, ideal condition as an inverse-crime scenario [22],
which yields a linear system with, depending on the relation between number of measurements
(equations) and voxels (unknowns), one unique or an infinite number of solutions.

Validation against the designed solution The intended outcome of the iterative algorithm
is the optimization program’s designed solution, i.e., a solution that satisfies all its constraints. I
have validated the algorithms with an inverse-crime study by using known numerical phantoms,
including the Shepp-Logan and FORBILD [23] phantoms. Due to the finite number of iterations
and the limited computer precision, it is challenging to evaluate mathematical convergence. In-
stead, I have computed metrics for each constraint of the optimization program and plotted them
against the iteration number, such that the asymptotic behavior is monitored and verified.

Validation against the desired solution Once an algorithm is validated for reaching the
feasible set, the reconstructed image represents a “designed solution”, which I have validated by
characterizing its difference against the ground truth, i.e, the original numerical phantoms, which
I refer to as the “desired solution”. The results show that for the algorithms under investigation,
they all numerically approach, with varying efficiency, to the designed solution; and when the data
are sufficient, the designed solution exhibit only numerical difference within computer precision to
the desired solution.

1.2.6 Investigate the appropriate parameter control in total-variation-based image-reconstruction
algorithms

Total-variation (TV) based image reconstruction algorithms can potentially yield images from
much reduced data (for example, sparse-view data) without significantly compromised image
quality [24,25]. Additional knowledge about the object from the prior images can provide po-
tentially remarkable help in reducing the solution space of TV-based algorithms. However, the
degree of helpfulness of the prior image also depends on the appropriate selection of algorithm
parameters, which have critical impact on the path in the solution-searching process within the
feasible set [28]. I investigated two such parameters, the image array size (or equivalently, the
image pixel size), and the data-error tolerance parameter.
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Figure 2: Images of the CATPHAN phantom within the middle transverse slice reconstructed with
ε = 8.6 (left), 8.65 (middle), and 8.7 (right).

Choice of image array size: In TV-based image reconstruction problem the X-ray projection
process is modeled as a linear system, and the dimension of the data vector is determined by
the physically available elements on the detector. However, the dimension of the image vector re-
mains a free parameter, and a different image array size mathematically defines a different linear
system. Choosing a larger image array size may improve spatial resolution due to smaller pixel
size, whereas the number of unknowns also increases and enlarges the feasible set, which ele-
vates the under-determinedness of the linear system and may potentially require more projection
views to avoid degradation of image quality. I have studied image reconstruction from numerical
phantom and physical phantom data by using a range of pixel sizes, from those below the sam-
pling limit (i.e. the Nyquist spatial frequency in the context of analytic reconstruction) up to four
times of the limit. I found that the TV-based algorithm is capable of yielding images of satisfactory
quality at over-sampled image grid, and with noise texture closer to images obtained with analytic
algorithms. This result can potentially help developing reconstruction techniques that produce
images of texture that observers are used to.

Choice of data-error tolerance parameter: As the main framework of the TV-based algorithms
under study, we solve the following constrained minimization problem:

f∗ = argmin||f||TV s.t. |H f−g| ≤ ε and f j ≥ 0, (4)

where the parameter ε determines the relaxed tolerance of inconsistency between the modeled
linear system and the measured data. Therefore, with other parameters fixed, each ε mathemat-
ically specifies a unique optimization problem, and, since both |H f−g| and ||f||TV are convex, a
unique solution. I designed strategies to determine the range of this key parameter by carefully
evaluating the degree of data inconsistency, and experimentally carried out image reconstructions
with a range of ε [25]. As an example, we display in Fig. 4 images of the CATPHAN phantom
reconstructed from real measurement data acquired at 120 views. With increasing ε, the images
show a gradual trend of smoother appearance with a more uniform background, at the price of
some low-contrast structures becoming less discernable and high-contrast objects becoming less
sharp, as a trade-off.

1.2.7 Investigate reconstruction quality and data-sampling configurations

CBCT image quality can in general improve when the intensity of illuminating X-ray increase,
which is also accompanied with higher imaging dose. However, given a total amount of imaging
dose, there exists degree of freedoms on how to allocate the total dose to each individual pro-
jection view, on the choice of image-reconstruction algorithm, and on the selection of appropriate
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algorithm parameters, all for the goal of obtaining an image that is optimal in the context of speci-
fied imaging tasks. To investigate how these variables impact image quality, I started with studying
the effect of dose-allocation parameters, i.e. different combinations of view number and dose per
view [19]. For this purpose I fixed the image-reconstruction algorithm as well as the associated
parameters, such that the dose-allocation parameters are isolated as the only free variable.

I first carried out a simulation study using the numerical phantom. Keeping the total photon
number a constant, I increased the number of views from 30 up to 720, while the number of
photons per view decreases proportionally. Then from these data sets I reconstructed images
using the FDK algorithm with Hanning window. I designed a set of quantitative metrics to evaluate
the effect of different dose-allocation schemes on the reconstruction image quality. I then repeated
the experiment using a different total photon number, which itself is a parameter and can have an
impact on the results and conclusion.

I also acquired experimental CBCT data using the calibration phantom, the home-made phys-
ical phantom, and anthropomorphic phantom. To minimize data truncation, I designed and made
a fixation device to avoid using the patient couch as the support. I then scanned the phantom
multiple times with different settings of tube current and exposure time, such that data sets at
varying mAs per view are obtained. I then obtain from the full data sets, each consists of 650
views, sparse-view data sets by extracting projection data at a subset of views that are evenly dis-
tributed over the scanning range. From these full and sparse-view data sets, I constructed data
sets that have the same total mAs (i.e. mAs per view times number of views). In the end, for each
of a number of total mAs values, I obtained a number of data sets with different mAs allocation
schemes. From each of these data sets, I reconstructed an image using the FDK algorithm with
the Hanning window.

Results of both simulation and real-data studies suggest that, when total X-ray flux is medium
or high, the dose-allocation may not have a significant impact on the reconstruction quality. How-
ever, when the total X-ray flux is low, the image quality can be improved by distributing the total
dose to a larger number of views.

1.2.8 Investigate the application of few-view reconstruction in imaging subjects with mo-
tion

I have studied the image reconstruction of subjects undergoing motion. Depending on the pattern
of the motion, two types of motion were considered: periodic and non-periodic. For the periodic
motion, I have conducted a study on reconstructing images from retrospectively sorted data. Be-
cause for a full CBCT scan, projections were only acquired for the subject at the same phase at a
small number of views, the reconstruction is inherently a few-view problem. I have reconstructed
images from simulated data generated at sparsely-distributed view-angles. The result shows that
while the peripheral regions of the image may contain artifact due to under-sampling, the central
ROI can be accurately reconstructed [24]. On the other hand, for the non-periodic motion, when
the motion amplitude is small, I have designed reconstruction programs specifically for incorpo-
rating the motion. Real data of a patient undergoing contrast-agent injection and perfusion were
used for the experiment. In this scenario, a prospective prediction or retrospective description
of the motion trajectory may be challenging. Therefore, the data-consistency enforcement in the
iterative reconstruction was relaxed to account for the small-amplitude motion. For a small subset
of angular views where the motion may have a large amplitude, they were excluded from the iter-
ative reconstruction due to the relaxed requirement on data sampling. The results show that the
iterative reconstruction may be less susceptible to motion of small amplitude than conventional,
analytic-based reconstructions. However, motion of large amplitude still poses a challenge for
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few-view iterative reconstruction, because the excessive level of motion-induced data inconsis-
tency.

1.2.9 Develop algorithms for reconstruction from offset-detector data

The flat-panel detectors on current CBCT systems are limited by their size, which leads to scan-
ning field-of-views (FOV) smaller than most patient body cross-sections such as in the pelvis
region. Therefore, an offset-detector geometry is employed as the clinical protocol for imaging
prostate-cancer patients. Iterative reconstruction without modification yields images with arti-
facts manifested as a ring corresponding to the inner detector-edge due to data inconsistency,
thereby preventing high-quality few-view reconstruction. I have developed an iterative algorithm
that can handle offset-detector geometry by introducing a weighting matrix to both sides of the
imaging model [25]. The algorithm, referred to as the adaptive-steepest-descent-weighted POCS
(ASD-WPOCS) algorithm, can therefore be used for reconstruction from both standard and offset-
detector geometries by using different weighting matrices.

1.3 Validate and evaluate the proposed configurations and algorithms

1.3.1 Design numerical phantoms with boney and soft-tissue structures

The algorithms developed have been tested first for their capability of achieving the solutions
specified by their respective reconstruction programs. Because the reconstruction is subject-
dependent, an array of numerical phantoms have been created/used for this validation purpose.
Existing, well-known numerical phantoms, such as Shepp-Logan and FORBILD phantoms, were
implemented according to the phantom descriptions. Additionally, a custom-made numerical
phantom mimicking the human pelvis region was created by incorporating high-contrast struc-
tures such as pelvic bones and low-contrast structures such as prostate, rectum, and bladder.
These boney and soft-tissue organs were modeled by ellipsoids of different shapes, and they
were assigned with their corresponding attenuation coefficients. These phantoms were useful in
arranging desired structures for different body cites. However, they were still considerably differ-
ent than the real human body, which is of practical IGRT interest. I have found out that some
results obtained with these synthetic phantoms could not translate to real phantom and patient
data. Therefore, a realistic numerical phantom was obtained by casting a CT image of a patient
to discrete image arrays. In this process, the CT numbers in Hounsfield Unit (HU) were converted
to the linear attenuation coefficients, such that data can subsequently be generated according to
X-ray path lengths. Not only did this numerical phantom include all the organs in human body,
it also contained noise and other physical factors and therefore visually appear realistic. In this
regard, it may contain higher value than synthetic numerical phantoms described above in mim-
icking practical CBCT imaging.

1.3.2 Generate phantom data simulating diagnostic scan and CBCT scans

I generated model CT and CBCT data from the numerical phantom images by performing a set
of forward projections using simulated circular cone-beam scanning geometries. The phantoms
were positioned on the middle plane, which is the plane containing the circular locus of the X-ray
source, with their centers aligned with the center of rotation (COR). On the middle plane, the cone
beam reduces to a fan beam, and the simulated curved and flat-panel detectors reduce to an arc
detector and a line detector, respectively. The arc- and line-detectors were placed such that the
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Figure 3: The numerical pelvis phantom within a transverse slice where the prostate is located.

X-ray projection of the COR intersects perpendicularly the detector at its geometric center. Other
geometric parameters, such as the physical sizes of the detector pixels and the distances between
X-ray sources and COR and detector planes, were assigned according to actual planning CT and
on-board CBCT systems. As an example, for the pelvis phantom, each image pixel represented a
physical size of 0.1 cm, and the detector was composed of 480 bins, each representing a physical
size also of 0.1 cm. The source-to-COR and source-to-detector distances were 100.0 and 150.0
cm, respectively, resulting in a magnification factor of 1.5. For numerical computation purposes,
some of the simulated scanning geometry was scaled down in accordance to the down-sampled
phantom images.

The simulated data were generated by applying the system matrix H to the phantom image.
Numerically, Hi j, the element of H with indexes i and j, corresponds to the contribution weight of
the j-th image-pixel to the ray-sum collected at the i-th detector-bin. Under the scanning geome-
tries specified, an X-ray does not necessarily traverse the center of an image pixel, and neither
does it intersect at the center of a detector bin. Therefore, I employed a ray-driven technique
for calculating Hi j for each ray-sum incrementally [30], and bi-linear interpolation was used for
determining the contributions from multiple pixels to a ray-sum.

1.3.3 Reconstruct images using proposed algorithms from simulation data

I employed the ASD-POCS algorithm [20,21] for reconstructing images from the simulated data.
Under the inverse-crime condition, the system matrix H used for generating data was also used
for image reconstruction. In this sense, the simulated “measurement” data are identical to the
model data, therefore free of inconsistency. The ASD-POCS reconstruction requires explicit
specification of the data-fidelity parameter ε. While ε generally takes a positive value for im-
age reconstruction from data containing inconsistency such as noise, the inverse-crime scenario
employs model data reconstruction which is perfectly consistent with the imaging model. There-
fore, ε should, in theory, be set as zero. However, because of limited computer precision, and
because of the finite number of iterations used, ε = 0 cannot be reached practically. Moreover,
the convergence metric cα(f) becomes undefined when ε = 0 because the data-divergence gra-
dient vector becomes a zero vector [19], and it cannot be employed for monitoring the algorithm
convergence at ε = 0. Instead, in the inverse-crime studies, we selected small, but finite values
for ε. Specifically, for the Shepp-Logan phantom, I have selected ε = 1.58×10−9, which is close
to the numerical precision. As for the pelvis phantom, the high complexity of the image demands
a prohibitively large number of iterations to converge the Euclidean divergence to an ε close to
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numerical precision. Therefore, I employed an asymptotic approach to infer the behavior of the
algorithm when ε = 0 by setting up multiple reconstructions with a descending series of ε. In the
study, I selected ε1 = 2.4×10−5, ε1 = 2.4×10−6, and ε3 = 2.4×10−7, and used a set of metrics to
monitor the algorithm convergence.

1.3.4 Evaluate reconstructed image quality and determine configurations and algorithms
for further real-data evaluation

I first performed reconstruction of the Shepp-Logan and FORBILD phantoms by using the ASD-
POCS algorithm. Because these phantoms have relatively simple structures, an ε close to numer-
ical precision was selected, and the algorithm reached convergence within about 200 iterations.
The reconstructed images were visually indistinguishable from the truth images, with numerical
differences, measured by root-mean-squared-error (RMSE) under 10−10. I then reconstructed im-
ages of the pelvis phantom from simulated data. Due to the complex phantom structure, selection
of ε near the numerical precision requires prohibitively long computation time. Therefore, by se-
lecting a descending series of ε above numerical precision, as described above, I observed also
a descending trend of reconstruction accuracy. For the smallest ε considered, the reconstruction
is visually indistinguishable from the truth. The results suggest that the configurations employed
in the simulation studies are likely to be adequate for real-data studies, which are available on
clinical CT and CBCT systems. Moreover, the strategies for selection of algorithm parameters
can be translated to real-data studies, where an additional consideration on data inconsistency
will be included.

1.3.5 Acquire real data using diagnostic CT, narrow-beam CBCT, and few-view CBCT from
physical phantoms

I have collected experimental data of the Catphan phantom, a Rando head phantom, and a pelvis
phantom, by using CT and CBCT systems.

Data of the Catphan phantom (Model No. 504, The Phantom Laboratory, Salem, NY) were ob-
tained by use of the OBI system with a circular cone-beam geometry on three sections: CTP515,
CTP528, and CTP404. During phantom setup, we first aligned the middle plane of the CTP404
section with aid of the wire ramps, following the method suggested by the phantom manufacturer.
The data obtained contain cone-beam effect, because a large volume of the phantom was irradi-
ated. To obtain narrow-beam CBCT data, I closed the collimating blades, and only a fan-shaped
region was illuminated. Two clinical scanning configurations, the high-quality head and low-dose
head protocols, were adopted for data acquisition. In an attempt to investigate the impact of
scanning range and angular sampling density, additional scanning configurations were also con-
sidered. In addition, the same Catphan phantom was also scanned with a planning CT under
helical mode, and the reconstructed images were retrieved as prior images.

Similarly, CBCT and CT data were also acquired from a Rando head phantom, which is made
of a human skull embedded in an epoxy material. Moreover, a physical pelvis phantom containing
both pelvic bones and soft-tissue-mimicking materials was scanned with CT and the CBCT system
on a SPECT-CT scanner.

All the acquired CBCT data were pre-processed for correcting physical factors, such as scatter,
beam-hardening, and detector-response non-uniformity. These CBCT data were made ready for
full- and few-view reconstruction studies, with the CT images made ready as prior images.
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1.3.6 Reconstruct image using proposed algorithms with prior image-incorporated real
phantom data

I have reconstructed images from real phantom data by using iterative algorithms. A variety
of strategies of incorporating prior images, described in detail previously, were implemented in
the reconstruction. In particular, the image-support and sparsity-constraint methods were im-
plemented without enforcing too strong constraints, yet capable of significantly reducing the null
space. On the iterative algorithm side, methods for reconstructing images onto non-isotropic vox-
els were developed [30], because CBCT images in clinical applications are frequently represented
by voxels with axial sizes larger than transverse sizes. Also, I have adopted the strategies of se-
lecting ε developed and refined from simulation studies to real data reconstructions. Specifically,
the value of ε can either be estimated from prior images, or it can be determined adaptively in
the CBCT reconstruction. In the latter case, I have selected ε as, for example, the Euclidean
data-divergence reached at a certain iteration. The specific iteration number for this selection
depends on the particular type of subject as well as on the scanning configuration, such as the
signal-to-noise ratio (SNR) in the measurement data.

1.3.7 Evaluate and optimize image reconstruction using few-view data from physical phan-
tom data

Evaluation studies [31] have been conducted in multiple levels throughout the project. First, the
validation study with numerical phantoms described above served the purpose of evaluation of the
algorithm’s capability of reaching the solutions to the reconstruction program formulated. Second,
I characterized the spatial resolution and contrast resolution of the Catphan phantom images by
using the standardized methods routinely performed in clinical quality assurance procedures. The
catphan phantom reconstructions are displayed in Fig. 4, and the spatial resolution as a function
of the parameter ε is plotted in Fig. 5.

In addition, I also performed visualization-based characterization of the Rando head phantom
images [31]. From the images displayed in Fig. 6, it can be observed that the iterative reconstruc-
tion yielded images of simultaneous higher spatial resolution and lower background noise.

Finally, the pelvis phantom images were reconstructed [29] and displayed in Fig. 7, from which
one can see that the ASD-POCS algorithm yielded images of quality better than other algorithms.

1.3.8 Evaluate image reconstruction quality from patient data

In addition, raw projection data of a prostate-cancer patient were retrospectively collected under
an Internal Review Board (IRB) approved protocol. Unlike the Rando head phantom, the pelvic
region of the patient is larger than the FOV of the full-fan geometry. Therefore, the data were
acquired with the low-dose thorax (LDT) protocol, a protocol employing the half-fan geometry,
offered on the OBI system.

I reconstructed images from both full- and half-view patient data, and display results in Fig.
8. It can be observed that the full-view ASD-POCS reconstruction shows better delineation of
the prostate than the FDK counterpart. In addition, the ASD-POCS reconstruction from half-view
data appear comparable to the full-view reconstruction, suggesting minimal susceptibility to a
50% reduction of view number. By assuming that the imaging dose is linearly proportional to the
number of views acquired, this translates to an effective dose reduction of 50%. However, the
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Figure 4: Images of the Catphan phantom within the CTP515 (row 1) and CTP528 (row 2) sections
reconstructed by use of the ASD-POCS (column 1) and FDK (column 2) algorithms.
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Figure 5: MTFs at 7 (solid curve) and 9 lp/cm (dotted curve) computed from CTP528 images
reconstructed by use of the ASD-POCS algorithm as functions of ε. Solid and dotted horizontal
lines represent the counterparts computed from FDK reference.
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Figure 6: CBCT images of the Rando head phantom reconstructed by the ASD-POCS (left) and
FDK (right) algorithms.

Figure 7: CBCT images of the physical pelvis phantom reconstructed from 120-view data by the
FDK (column 2), EM (column 3), and ASD-POCS (column 4) algorithms. The 720-view recon-
struction by FDK is displayed in column 1 as reference.

21



Figure 8: CBCT images of the patient within a coronal slice constructed by use of the ASD-POCS
(row 1) and FDK (row 2) algorithms from the 626- and 313-view (column 2) data.

FDK algorithm is much more susceptible to the angular under-sampling, as demonstrated by the
much degraded quality, especially for soft-tissue organs such as the prostate.

1.3.9 Evaluate reconstructed images with quantitative metrics

I have carried out for each simulated and real data experiment an evaluation study by calculating
relevant quantitative metrics. Depending on the nature of these metrics, current effort on image-
quality evaluation has been classified to similarity-metric-based evaluation and technical-efficacy-
metric-based evaluation.
Similarity-metric-based evaluation I have computed quantitative metrics, including root-mean-
squared error (RMSE), mutual information (MI), and universal quality index (UQI) [26] for charac-
terizing the similarity between the designed and desired solutions. For innovative imaging con-
figurations including sparse-view and narrow-beam illumination, the reconstructed images (i.e.,
designed solutions) have been compared with the images reconstructed from full-view data or
data without truncation. Specifically, the impact of optimization-program parameters and algo-
rithm parameters have been characterized by plotting these metrics versus the parameter values.
Technical-efficacy-metric-based evaluation I also computed technical-efficacy-based metrics,
such as spatial resolution, contrast-noise-ratio (CNR), and detectability, for both designed and
desired solutions. Due to different image texture, some metrics computed from sparse-view or
truncated reconstruction can be comparable or even higher than those computed from the desired
reconstruction. These metrics, however, generally decrease when the number of view decreases,
or when the truncated region increases. I have therefore determined the lower bound of view
reduction and upper bound of degree of truncation when the corresponding aspect of image
quality falls below that computed from the desired solution.
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KEY RESEARCH ACCOMPLISHMENTS

• I have implemented a collimation device and mounted it on the CBCT system for ROI data
acquisition.

• I have investigated the feasibility of reproducing the geometrical configuration of diagnostic
CT scan on CBCT.

• I have generated data from prior image and synthesized it with the CBCT ROI data.

• I have investigated and developed compensation techniques to reduce scatter effect.

• I have implemented filtered-backprojection algorithm for reconstructing images from synthe-
sized projection data.

• I have investigated and implemented non-conventional imaging trajectories for CBCT.

• I have investigated optimal allocation schemes of a given total dose.

• I have investigated the effect of key parameters in TV-based algorithms.

• I have developed strategies for quantitatively evaluating quality of images reconstructed from
real data.

• I have investigated and implemented reverse-helix and two-circle scanning trajectories and
have obtained real data from a clinical CBCT system with these trajectories.

• I have acquired real data of physical phantom on a clinical CBCT system under full-view,
sparse-view, data truncation, and offset-detector configurations.

• I have investigated and developed optimization-based algorithms for CBCT reconstruction
by specifying imaging model, formulating optimization programs, and designing and imple-
menting iterative algorithms.

• I have carried out numerical validation studies to verify the iterative algorithms for their ca-
pability of reaching the designed solution, and to verity the optimization programs for their
capability of yielding designed solution close to the desired solution.

• I have reconstructed CBCT images from full-view data acquired at current clinical con-
figurations and showed potential quality improvement by use of prior-image incorporated,
optimization-based algorithms.

• I have reconstructed CBCT images from sparse-view data and showed that images compa-
rable to what is currently used can be obtained from low-dose data containing significantly
reduced projection views.

• I have reconstructed CBCT images from truncated data and showed that images compara-
ble to what is currently used can be obtained from low-dose data containing severe trunca-
tion.

• I have reconstructed CBCT images from offset-detector data and showed that current CBCT
FOV can be enlarged without introducing additional artifacts.

• I have demonstrated the efficacy of the algorithms developed by using patient data.

• I have carried out quantitative characterization and evaluation studies by calculating similarity-
based and technical-efficacy-based metrics.
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CONCLUSIONS

Throughout the three years of research supported by the Training Award, I have investigated
and implemented novel scanning trajectories with aid of additional hardware components and
software control. Simulation data have been generated for initial test of object coverage for these
scanning trajectories. I have also acquired real data of physical phantoms by using a clinical
CBCT system under a variety of sampling configurations, including full-view, sparse-view, trun-
cated data, and offset-detector configurations. I carried out a rigorous investigation on developing
optimization-based image reconstruction algorithms by specifying a discrete imaging model, for-
mulating optimization programs, and designing and implementing iterative algorithms. I have
designed a host of parameters for the imaging model, optimization programs, and iterative al-
gorithms, and strategies for adaptively selecting these parameters have been laid out. I have
used developed optimization-based algorithms to reconstruct images from data acquired under
various sampling configurations. Prior images have been investigated for incorporation in im-
age reconstruction tasks for all the data acquisition configurations. Physical phantoms, including
standardized QA phantom and anthropomorphic phantoms, were scanned with CT and CBCT for
evaluation of the algorithms developed. Patient data were collected and used for full- and few-
view reconstruction. I have validated, characterized, and assessed the reconstruction quality by
using simulation data, physical phantom data, and patient data. Quantitative metrics have been
calculated for quantitatively characterizing and evaluating the reconstruction quality, choice of
parameters, and strategies for incorporating prior images. I have demonstrated that prior-image-
incorporated iterative reconstruction algorithms can potentially enhance high-quality CBCT im-
ages for IGRT, and that images such reconstructed from substantially reduced data may still bear
high clinical IGRT utility.

In summary, I have achieved the goals planned for the all three years. The techniques de-
veloped in the project have high technical significance in that image quality of current CBCT can
potentially be improved by the algorithms developed, and that novel, low-dose CBCT imaging can
be enabled by the algorithms developed. I have also achieved the training goals of the award.
The research of the training lead to numerous publications and conference abstracts. Upon com-
pletion of this project, I also successfully earned my PhD degree with a dissertation written on
topics closely related to this project.
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